Novo artigo publicado: 'Knowledge-enhanced document embeddings for text classification'

Terça-feira, 23 de outubro de 2018

O artigo foi publicado no periódico Knowledge-Based Systems, pelos pesquisadores Roberta A.Sinoaraa (ICMC/USP), JoseCamacho-Collados (Cardiff University), Rafael G.Rossi (LivES/UFMS), Roberto Navigli (colaborador) e Solange O.Rezende (ICMC/USP).

Resumo: Accurate semantic representation models are essential in text mining applications. For a successful application of the text mining process, the text representation adopted must keep the interesting patterns to be discovered. Although competitive results for automatic text classification may be achieved with traditional bag of words, such representation model cannot provide satisfactory classification performances on hard settings where richer text representations are required. In this paper, we present an approach to represent document collections based on embedded representations of words and word senses. We bring together the power of word sense disambiguation and the semantic richness of word- and word-sense embedded vectors to construct embedded representations of document collections. Our approach results in semantically enhanced and low-dimensional representations. We overcome the lack of interpretability of embedded vectors, which is a drawback of this kind of representation, with the use of word sense embedded vectors. Moreover, the experimental evaluation indicates that the use of the proposed representations provides stable classifiers with strong quantitative results, especially in semantically-complex classification scenarios.

 

  • canon
  • canon
  • canon
  • canon
  • canon
  • canon
  • canon
  • canon
  • canon

PESQUISA

Engenharia de Software e Inteligência Computacional
 

PÓS-GRADUAÇÃO

Mestrado acadêmico e profissional em Computação
 

67 3509 3813

FALE CONOSCO PARA MAIS INFORMAÇÕES